Friday, 13 November 2015

elementary number theory - Bad Fraction Reduction That Actually Works



$$\frac{16}{64}=\frac{1\rlap{/}6}{\rlap{/}64}=\frac{1}{4}$$



This is certainly not a correct technique for reducing fractions to lowest terms, but it happens to work in this case, and I believe there are other such examples. Is there a systematic way to generate examples of this kind of bad fraction reduction?


Answer




It's easy to find them all. Suppose $\rm\: (10\ a + n)/(10\ n + b) = a/b\:.\:$ Thus $\rm\ (10\ a-b)\ n = 9\:a\:b\:.$



Case 1: $\rm\:(9,n) = 1\::\ \: 9\ |\ 10\:a-b\ \Rightarrow\ 9\ |\ a-b\ \Rightarrow a=b\ \Rightarrow\ 9\:a\:n = 9\:a^2\ \Rightarrow\ n=a=b\: $ (trivial)



Case 2: $\rm\:(9,n) = 9\::\ 10\:a-b = a\:b\ \Rightarrow\ a|b,\ 10 = (b/a)\:(a+1)\:$ so $\rm\ a,b = 1,5\:$ or $\: 4,8\:$



which yields the solutions: $\:\ 19/95 = 1/5\:,\:$ and $ 49/98 = 1/2\:.\ $ Similar analysis of the remaining



Case 3: $\rm\: (9,n) = 3\::\: $ yields $\:16/64 = 1/4\:,\:$ and $\: 26/65 = 2/5\:.$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...