Monday, 9 November 2015

linear algebra - Proofs Invertible & Diagonal matrix




Given:
$P$ is an invertible matrix.



$D$ is a diagonal matrix.



$A$ is an $n\times n$ matrix.



AND



$A = PDP^{-1}$




Prove that the determinant of A equals the product of the diagonal entries of $D$.


Answer



Using $|ABC|=|A||B||C|$ and $|A|=\frac{1}{|A^{-1}|}$,



$\displaystyle|A|=|P D P^{-1} | =|P||D||P^{-1}|=|P||D|\frac{1}{|P|}=|D|$.



$D$ is diagonal so $|D|=\prod_{n\geq 1} D_{nn}$, that is, the determinant is equal to the product of the diagonal elements.



$|A|=\prod_{n\geq 1} D_{nn}$ as required



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...