Saturday, 7 November 2015

summation - Find the integral part of $sum_{i=2}^{10000}frac1{sqrt{i}}$



$$A = \frac1{\sqrt{2}}+\frac1{\sqrt{3}}+\cdots+\frac{1}{\sqrt{10000}}$$




Find $\lfloor A\rfloor$ where $\lfloor x\rfloor$ is the greatest integer less than, or equal to $x$



I got stuck on this, so when I finally did it, I decided to post it here. And of course, I am always looking for alternatives, so keep answering.


Answer



We start by noting that, $$\frac{1}{\sqrt{k}}=\frac2{\sqrt{k}+\sqrt{k}}\lt\frac2{\sqrt{k}+\sqrt{k-1}}$$



So we have, $$\frac{1}{\sqrt{k}}\lt \frac{2}{\sqrt{k}+\sqrt{k-1}} = 2(\sqrt{k} - \sqrt{k-1})$$



Thus we have $$S=\sum_{i=2}^{10000}\frac{1}{\sqrt{k}} \lt \sum_{i=2}^{10000}2(\sqrt{k} - \sqrt{k-1}) = 2(\sqrt{10000}-\sqrt1) = 198$$




$$\color{red}{A\lt198}\tag{1}$$



Also,



$$\frac{1}{\sqrt{k}}=\frac2{\sqrt{k}+\sqrt{k}}\gt\frac2{\sqrt{k}+\sqrt{k+1}}$$



And so,



$$\frac{1}{\sqrt{k}}\gt \frac{2}{\sqrt{k}+\sqrt{k+1}} = 2(\sqrt{k+1} - \sqrt{k})$$




And therefore,



$$S=\sum_{i=2}^{10000}\frac{1}{\sqrt{k}} \gt \sum_{i=2}^{10000}2(\sqrt{k+1} - \sqrt{k}) = 2(\sqrt{10001}-\sqrt2) \gt 197$$



$$\color{red}{A\gt197}\tag{2}$$



Combining $(1)$ and $(2)$



$$197\lt A \lt 198$$




$$\implies \lfloor A\rfloor = 197$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...