Tuesday, 21 March 2017

abstract algebra - $mathbb Q(zeta_m)capmathbb Q(zeta_n)=mathbb Q(zeta_d)$



Prove that $\mathbb Q(\zeta_m)\cap\mathbb Q(\zeta_n)=\mathbb Q(\zeta_d)$ where $d=\gcd(m,n)$.




I want to solve this problem without Galois theory.



I know only about field extension. For example, algebraic extension, cyclotomic extension, splitting field and algebraic closure.



Can I solve it without Galois theory?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...