If ∃a,b,m1,m2∈Z,a≡b(modm1) and a≡b(modm2), then ∃k∈Z,a=b+m1m2kgcd(m1,m2)⟹a≡b(modL), where L is the l.c.m. of m1 and m2.
I am trying to derive, starting with the first part, with no success
- ∃l∈Z,a−b=l⋅m1⟹a=b+l⋅m1
- ∃m∈Z,a−b=m⋅m2⟹a=b+m⋅m2
Equating both, b+l⋅m1=b+m⋅m2
Unable to start the proof
Based on comment by @saulspatz, the new attempt to proof is:
∃r1,r2∈Z, s.t.
(i) m1=r1gcd(m1,m2), (ii) m2=r2gcd(m1,m2)
Multiplying, (i) by (ii), we get:
m1m2=r1r2(m1,m2)2
if for suitable integer k, take r1r2=1k, then not possible as r1,r2 are themselves integers.
So, anyway attempt something:
Let, r1r2=k′, m1m2=k′(m1,m2)2⟹(m1,m2)=m1m2k′⋅(m1,m2)
But, k′ is an integer, and the final form has an integer k in numerator.
Answer
Let M=m∗n be a multiple of n.
Then a≡bmodn⟹a≡b+knmodM for some $k: 0 \le k
So if we have L=lcm(m1,m2)=k1m1=k2m2 then
Then if a≡bmodm1 and a≡bmodm2 then a≡b+l2∗m1modL and a≡b+l2∗m1modL where l1<k1 and l2<k2.
So l1∗m1≡l2∗m2. Now 0≤l1∗m1<k1m1=L and 0≤l2∗m2,k2m2=L so l1∗m1=l2∗m2 so l1m1=l2m2 is a common multiple of m1,m2.
But L is the least common multiple so l1∗m1=l2∗m2=0.
======
a≡bmodm1 means a=b+j∗m1=b+j∗gcd(m1,m2)∗m1gcd(m1,m2).
And a≡bmodm2 means a=b+l∗m2=b+l∗gcd(m1,m2)∗m2gcd(m1,m2)
So j∗gcd(m1,m2)∗m1gcd(m1,m2)=l∗gcd(m1,m2)∗m2gcd(m1,m2)
So j∗m1gcd(m1,m2)=l∗m2gcd(m1,m2)
But m1gcd(m1,m2) and m2gcd(m1,m2) are relatively prime.
So m1gcd(m1,m2)|l and m2gcd(m1,m2)|j
So j∗m1gcd(m1,m2)=l∗m2gcd(m1,m2)=k∗m1gcd(m1,m2)∗m2gcd(m1,m2)
And j∗gcd(m1,m2)∗m1gcd(m1,m2)=l∗gcd(m1,m2)∗m2gcd(m1,m2)=k∗gcd(m1,m2)∗m1gcd(m1,m2)∗m2gcd(m1,m2)=k∗m1m2gcd(m1,m2)
So a=b+k∗m1m2gcd(m1,m2)
And a≡bmodm1m2gcd(m1,m2)
And L=m1m2gcd(m1,m2)= lowest common multiple of m1,m2.
No comments:
Post a Comment