Thursday, 30 March 2017

elementary number theory - aequivbpmodm1,aequivbpmodm2impliesaequivbpmodL





If a,b,m1,m2Z,ab(modm1) and ab(modm2), then kZ,a=b+m1m2kgcd(m1,m2)ab(modL), where L is the l.c.m. of m1 and m2.




I am trying to derive, starting with the first part, with no success




  1. lZ,ab=lm1a=b+lm1

  2. mZ,ab=mm2a=b+mm2




Equating both, b+lm1=b+mm2



Unable to start the proof






Based on comment by @saulspatz, the new attempt to proof is:
r1,r2Z, s.t.
(i) m1=r1gcd(m1,m2), (ii) m2=r2gcd(m1,m2)
Multiplying, (i) by (ii), we get:
m1m2=r1r2(m1,m2)2
if for suitable integer k, take r1r2=1k, then not possible as r1,r2 are themselves integers.




So, anyway attempt something:
Let, r1r2=k, m1m2=k(m1,m2)2(m1,m2)=m1m2k(m1,m2)



But, k is an integer, and the final form has an integer k in numerator.


Answer



Let M=mn be a multiple of n.



Then abmodnab+knmodM for some $k: 0 \le k

So if we have L=lcm(m1,m2)=k1m1=k2m2 then




Then if abmodm1 and abmodm2 then ab+l2m1modL and ab+l2m1modL where l1<k1 and l2<k2.



So l1m1l2m2. Now 0l1m1<k1m1=L and 0l2m2,k2m2=L so l1m1=l2m2 so l1m1=l2m2 is a common multiple of m1,m2.



But L is the least common multiple so l1m1=l2m2=0.



======



abmodm1 means a=b+jm1=b+jgcd(m1,m2)m1gcd(m1,m2).




And abmodm2 means a=b+lm2=b+lgcd(m1,m2)m2gcd(m1,m2)



So jgcd(m1,m2)m1gcd(m1,m2)=lgcd(m1,m2)m2gcd(m1,m2)



So jm1gcd(m1,m2)=lm2gcd(m1,m2)



But m1gcd(m1,m2) and m2gcd(m1,m2) are relatively prime.



So m1gcd(m1,m2)|l and m2gcd(m1,m2)|j




So jm1gcd(m1,m2)=lm2gcd(m1,m2)=km1gcd(m1,m2)m2gcd(m1,m2)



And jgcd(m1,m2)m1gcd(m1,m2)=lgcd(m1,m2)m2gcd(m1,m2)=kgcd(m1,m2)m1gcd(m1,m2)m2gcd(m1,m2)=km1m2gcd(m1,m2)



So a=b+km1m2gcd(m1,m2)



And abmodm1m2gcd(m1,m2)



And L=m1m2gcd(m1,m2)= lowest common multiple of m1,m2.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...