Sunday, 26 March 2017

calculus - Evaluate: $int_{gamma}textrm {x.n(x)} dstextrm{(x)}$

Let $\textrm{x}=(x,y)\in\mathbb{R^2} $. Let $\textrm{n(x)}$ denotes the unit outward normal to the ellipse $\gamma$ whose equation is given by $$\frac{x^2}{4}+\frac{y^2}{9}=1$$ at point $\textrm{x}$ on it. Evaluate: $$\int_{\gamma}\textrm {x.n(x)} ds\textrm{(x)}.$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...