Sunday, 26 March 2017

sequences and series - Does $zeta(-1)=-1/12$ or $zeta(-1) to -1/12$?

I saw NumberPhile channel on Youtube, and they proved $1+2+3+\cdots=-1/12$. Also, I read This.







So, which one is correct



$$\zeta(-1)=-1/12\\ \text{or} \\\zeta(-1) \to -1/12$$



Equivalent to:



$$1+2+3+\cdots=-1/12\\ \text{or} \\1+2+3+\cdots \to -1/12$$







My question: Does it "equal" or "converge"?






Question Explanation:



I mean by "$\to$" "approaches to", like $x\to a $ means $\forall \epsilon>0, |x-a|<\epsilon.$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...