I'm trying to prove the following:
Using the known limits of exp:R→(0,∞) for x→±∞ and ln:(0,∞)→R for x→0+,∞, show that for any r∈R with r>0 we have
lim
This is how I proved both:
\lim_{x \rightarrow \infty}x^r=\lim_{x \rightarrow \infty}e^{rlnx}=e^{r\lim_{x \rightarrow \infty}\ln x}=e^{r\infty}=(e^r)^\infty=\infty \ \text{since $r>0$}
\lim_{x \rightarrow 0^+}x^r=\lim_{x \rightarrow 0^+}e^{r\ln x}=e^{r\lim_{x \rightarrow 0^+}\ln x}=e^{r(-\infty)}=(e^r)^{-\infty}=\frac{1}{(e^r)^{\infty}}=\frac{1}{\infty}=0 \ \text{since $r>0$} .
I'm not sure if raising e^r to positive or negative infinity is valid here.
Answer
Your intuition is correct, however you can write the solution a little better:
Since x^r={e^{\ln(x^r)}}=e^{r\ln(x)} and \displaystyle \lim_{x \to \infty} \ln(x)=+\infty then \displaystyle \lim_{x \to \infty} x^r=+\infty.
Again, we have x^r=e^{r\ln(x)}, and since \displaystyle \lim_{x \to 0^+} \ln(x)=-\infty then \displaystyle \lim_{x \to 0^+} x^r=0.
It's important to clarify that \pm \infty ARE NOT REAL NUMBERS, so don'treat them as such (unless you are working in the extended real line \overline{\mathbb{R}}). Some teachers are really picky with that.
No comments:
Post a Comment