Thursday 16 March 2017

calculus - How can I deduce the value of $frac{1}{sqrt{4pi t}}int_{-infty}^{infty}sin(y)e^{-frac{(x-y)^2}{4t} } dy$ without actually evaluating it?



How can I deduce that

$$
\frac{1}{\sqrt{4\pi t}}\int_{-\infty}^{\infty}\sin(y)\,e^{-\frac{(x-y)^2}{4t} } dy = e^{-t} \sin(x)
$$
without actually evaluating the definite integral?


Answer



I will assume the following result:




The solution to the Heat Equation




$$\frac{df}{dt} = \nabla^2f$$



with initial condition $f(x,0) = g(x)$ can be written



$$f(x,t) = \frac{1}{\sqrt{4\pi t}}\int_{-\infty}^\infty e^{-\frac{(x-y)^2}{4t}}g(y) dy$$




Now by inserting



$$f(x,t) = e^{-t}\sin(x)$$




into the Heat Equation we find that it does satisfy it with the initial condition $f(x,0) = \sin(x)$. From the result above it therefore follows that



$$e^{-t}\sin(x) = \frac{1}{\sqrt{4\pi t}}\int_{-\infty}^\infty e^{-\frac{(x-y)^2}{4t}}\sin(y) dy$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...