Wednesday, 22 March 2017

Induction Proof: Fibonacci Numbers Identity with Sum of Two Squares

Using induction, how can I show the following identity about the fibonacci numbers? I'm having trouble with simplification when doing the induction step.



Identity: $$f_n^2 + f_{n+1}^2 = f_{2n+1}$$



I get to:




$$f_{n+1}^2 + f_{n+2}^2$$



Should I replace $f_{n+2}$ using the recursion? When I do that, I end up with the product of terms, and that just doesn't seem right. Any guidance on how to get manipulate during the induction step?



Thanks!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...