I've been wrapping my head around this question lately:
Let
$$a = \frac{9+\sqrt{45}}{2}$$
Find the value of
$$\frac{1}{a}$$
I've done it like this:
$$\frac{1}{a}=\frac{2}{9+\sqrt{45}}$$
I rationalize the denominator like this:
$$\frac{1}{a}=\frac{2}{9+\sqrt{45}} \times (\frac{9-\sqrt{45}}{9-\sqrt{45}})$$
This is what I should get:
$$\frac{1}{a} = \frac{2(9-\sqrt{45})}{81-45} \rightarrow \frac{1}{a}=\frac{18-2\sqrt{45}}{36})$$
Which I can simplify to:
$$\frac{1}{a}=\frac{2(9-\sqrt{45})}{36}\rightarrow\frac{1}{a}=\frac{9-\sqrt{45}}{18}$$
However, this answer can't be found in my multiple choice question here:
Any hints on what I'm doing wrong?
Answer
$$\frac { 1 }{ a } =\frac { 9-\sqrt { 45 } }{ 18 } =\frac { 3\left( 3-\sqrt { 5 } \right) }{ 18 } =\frac { 3-\sqrt { 5 } }{ 6 } $$
No comments:
Post a Comment