Thursday, 30 March 2017

fractions - Let $a = frac{9+sqrt{45}}{2}$. Find $frac{1}{a}$



I've been wrapping my head around this question lately:




Let



$$a = \frac{9+\sqrt{45}}{2}$$



Find the value of



$$\frac{1}{a}$$



I've done it like this:




$$\frac{1}{a}=\frac{2}{9+\sqrt{45}}$$



I rationalize the denominator like this:



$$\frac{1}{a}=\frac{2}{9+\sqrt{45}} \times (\frac{9-\sqrt{45}}{9-\sqrt{45}})$$



This is what I should get:



$$\frac{1}{a} = \frac{2(9-\sqrt{45})}{81-45} \rightarrow \frac{1}{a}=\frac{18-2\sqrt{45}}{36})$$




Which I can simplify to:



$$\frac{1}{a}=\frac{2(9-\sqrt{45})}{36}\rightarrow\frac{1}{a}=\frac{9-\sqrt{45}}{18}$$



However, this answer can't be found in my multiple choice question here:



enter image description here



Any hints on what I'm doing wrong?


Answer




$$\frac { 1 }{ a } =\frac { 9-\sqrt { 45 } }{ 18 } =\frac { 3\left( 3-\sqrt { 5 } \right) }{ 18 } =\frac { 3-\sqrt { 5 } }{ 6 } $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...