Friday, 31 March 2017

algebra precalculus - Why is $sqrt[3]{18+5sqrt{13}} + sqrt[3]{18-5sqrt{13}} = 3$?





How to show that $$\sqrt[3]{18+5\sqrt{13}} + \sqrt[3]{18-5\sqrt{13}} = 3?$$




This equality comes from solving $$t^3 - 15 t - 4 = 0$$ using Cardanos fomula and knowing the solution $t_1=4$.



I have attempted multiplying the whole thing with $(\sqrt[3]{18+5\sqrt{13}})^2 - (\sqrt[3]{18-5\sqrt{13}})^2$, but no success. Then I have solved for one cubic root and put all to the third power. Also no success.


Answer



Let $(a + b\sqrt{13})^3 = (18 + 5\sqrt{13})$ for $a, b \in \Bbb Q$



Expanding the LHS gives,




$$(a^3 + 39 ab^2 - 18 ) +\sqrt{13}(3a^2 b + 13 b^3 - 5) = 0$$,



From this we get,



$$\begin{cases}a^3 + 39 ab^2 - 18 = 0 \\ 3a^2 b + 13 b^3 - 5 = 0\end{cases}$$



Solving the system give $ a = \dfrac 32$ and $ b = \dfrac12$



Therefore




$$\sqrt[3]{(18 + 5\sqrt{13})} = \dfrac 32 +\dfrac12\sqrt{13}$$



Similarly,



$$\sqrt[3]{(18 - 5\sqrt{13})} = \dfrac 32 -\dfrac12\sqrt{13}$$



Hence the sum is $3$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...