Let $f(x) = \frac4\pi \cdot (\sin x + \frac13 \sin (3x) + \frac15 \sin (5x) + \dots)$. If for $x=\frac\pi2$, we have
$$f(x) = \frac{4}{\pi} ( 1 - \frac13 +\frac15 - \frac17 + \dots) = 1$$
then obviously :
$$ 1 - \frac13 +\frac15 - \frac17 + \dots=\frac{\pi}{4}$$
Now how can we prove that:
$$\frac{\pi^2}{8} = 1 + \frac1{3^2} +\frac1{5^2} + \frac1{7^2} + \dots$$
Tuesday, 28 March 2017
sequences and series - how can we show $frac{pi^2}{8} = 1 + frac1{3^2} +frac1{5^2} + frac1{7^2} + …$?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment