Tuesday, 14 March 2017

calculus - Integrate $int frac{ln(sin x)}{sin^2 x},mathrm dx.$



I'm having trouble evaluating the integral




$$\int \frac{\ln(\sin x)}{\sin^2 x}\,\mathrm dx.$$



I tried $u$-substitution and integration by parts but they didn't work.


Answer



Here is a start. using integration by parts,




$$ \int u dv = u v - \int v du .$$





Let



$$ u=\ln(\sin(x)) \implies u'=\frac{\cos(x)}{\sin(x)}=\cot(x),\quad v=\int \frac{dx}{\sin^2 x}=-\cot(x). $$



Can you finish it now?


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...