Thursday, 16 March 2017

sequences and series - Computing suminftym=0suminftyn=0frac1Gammaleft(fracm+n2right)Gammaleft(frac1+m+n2right)



I'm trying to compute:



m=0n=01Γ(m+n2)Γ(1+m+n2)




(From CMJ)



Using the duplication formula:



Γ(x)Γ(x+12)=π22x1Γ(2x)



1Γ(m+n2)Γ(1+m+n2)=1π2m+n1Γ(m+n)=1π2m+n1(m+n1)!



So:




m=01Γ(m+n2)Γ(1+m+n2)=1πm=02m+n1(m+n1)!=1πm=n12mm!



1πm=n12mm!n1π2n1(n1)!



The series n11π2n1(n1)! is convergent so:



m=0n=01Γ(m+n2)Γ(1+m+n2)=1πn=1m=n12mm!



Is there a simple way to compute this quantity?


Answer




Rearranging the terms and putting those with k=m+n together (and leaving out the one where k=0), we get



m=0n=01Γ(m+n2)Γ(1+m+n2)=m=0n=02m+n1Γ(m+n)π =k=1(k+1)2k1(k1)!π=k=1(k1)2k1(k1)!π+2k=12k1(k1)!π=2πk=22k2(k2)!+2πe2=4e2π.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...