I am trying to calculate I=∫π20arcsin(√sinx)dx So far I have done the following. First I tried to let sinx=t2 then:
I=2∫10xarcsinx√1−x4dx=∫10(arcsin2x)′x√1+x2dx
=π28−∫10arcsin2x(1+x2)3/2dx We can expand into power series the integral, we have: arcsin2z=∑n≥122n−1z2nn2(2nn) and using the binomial series for (1+x2)−3/2 will result in: ∑n≥122n−1x2nn2(2nn)∑k≥0(−3/2k)x2k But I dont know how to simplify this. I tried one more thing, letting sinx=sin2t gives:
I=2∫π20xsinx√1+sin2xdx Since ∫sinx√1+sin2xdx=−arcsin(cosx√2)+C we can integrate by parts to obtain: I=2∫π20arcsin(cosx√2)dx=2∫π20arcsin(sinx√2)dx But I am stuck, so I would appreciate some help.
Edit: By letting sinx√2=t We get: I=2∫1√20arcsinx√12−x2dx=2Li2(1√2)−π224+ln224 Where the latter integral was evaluated with wolfram. I would love to see a proof for that.
Answer
Write
I(t)=∫1√202arcsin(tx)√12−x2dx
and calculate
I′(t)=∫1√202x√(12−x2)(1−(tx)2)dx=log(√2+t)−log(√2−t)t=Li1(t√2)−Li1(−t√2)t.
Then
I(1)=∫10I′(t)dt=Li2(1√2)−Li2(−1√2).
No comments:
Post a Comment