$$ \lim_{n\to\infty}\frac{\sin(1)+\sin(\frac{1}{2})+\dots+\sin(\frac{1}{n})}{\ln(n)}
$$
I tried applying Cesaro Stolz and found its $(\sin 1/(n+1))/\ln(n+1)/n$ where $\ln$ is $\log_e$ and it would be $1$ and so the limit is $0$, but in my book the answer is $2$. Am I doing something wrong or can't Cesaro be applied here?
No comments:
Post a Comment