Tuesday, 6 August 2013

calculus - Algebra of limits vs. L'Hospital




We have to evaluate the following limit:



limx0xsin(x)x3



When I evaluate it using L'Hospital rule I get 16 but when I simplify the limit using simple algebraic rules of limit I get 0.



We can use the this rule:
lim[f(x)±g(x)]=lim[f(x)]±lim[g(x)] to simplify the given limit.




limx0xsin(x)x3=limx0xx3limx0sin(x)x3



Also, lim[f(x).g(x)]=lim[f(x)].lim[g(x)].



limx0xx3limx0sin(x)x3=limx01x2(limx0sin(x)x)(limx01x2)



Now, since, \lim_{x\to 0} \dfrac{\sin(x)}{x} = 1,



\lim_{x \to 0}\dfrac{1}{x^2} - \left(\lim_{x\to 0} \dfrac{\sin(x)}{x} \right)\left(\lim_{x\to 0} \dfrac{1}{x^2}\right) = \lim_{x \to 0}\dfrac{1}{x^2} - \lim_{x\to 0} \dfrac{1}{x^2} = \lim_{x \to 0}\left(\dfrac{1}{x^2} - \dfrac{1}{x^2}\right) = 0




Why am I getting 0 when I use algebra of limits.


Answer



Rules like



\lim[f(x) \pm g(x)]=\lim[f(x)] \pm \lim[g(x)]



are only true if all the limits involved converge to finite numbers. Almost all the limits involved in your argument turn out to approach infinity.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...