We have to evaluate the following limit:
limx→0x−sin(x)x3
When I evaluate it using L'Hospital rule I get 16 but when I simplify the limit using simple algebraic rules of limit I get 0.
We can use the this rule:
lim[f(x)±g(x)]=lim[f(x)]±lim[g(x)] to simplify the given limit.
limx→0x−sin(x)x3=limx→0xx3−limx→0sin(x)x3
Also, lim[f(x).g(x)]=lim[f(x)].lim[g(x)].
∴limx→0xx3−limx→0sin(x)x3=limx→01x2−(limx→0sin(x)x)(limx→01x2)
Now, since, \lim_{x\to 0} \dfrac{\sin(x)}{x} = 1,
\lim_{x \to 0}\dfrac{1}{x^2} - \left(\lim_{x\to 0} \dfrac{\sin(x)}{x} \right)\left(\lim_{x\to 0} \dfrac{1}{x^2}\right) = \lim_{x \to 0}\dfrac{1}{x^2} - \lim_{x\to 0} \dfrac{1}{x^2} = \lim_{x \to 0}\left(\dfrac{1}{x^2} - \dfrac{1}{x^2}\right) = 0
Why am I getting 0 when I use algebra of limits.
Answer
Rules like
\lim[f(x) \pm g(x)]=\lim[f(x)] \pm \lim[g(x)]
are only true if all the limits involved converge to finite numbers. Almost all the limits involved in your argument turn out to approach infinity.
No comments:
Post a Comment