Tuesday, 17 September 2013

calculus - Finding $lim_{xtoinfty} frac {(x!)^{frac 1 x}}{x}$





Find $\displaystyle \lim_{x\to\infty} \frac {(x!)^{\frac 1 x}}{x}$





I have no idea how to solve it, I can approximate it to be in $(0,1)$ by squeezing but getting to the solution $(\frac 1 e)$ seems like it would require a lot more. Is this an identity?



Note: no integrals nor gamma function.


Answer



Note this
$$ \left( \frac{x!}{x^x} \right)^{1/x} = (a_x)^{1/x} $$



where $a_x = \frac{x!}{x^x}$ and then use the fact that





$$ \lim_{x\to \infty} (a_x)^{1/x} = \lim_{x\to \infty} \frac{a_{x+1}}{a_x} $$




and the evaluation of limit will become easy



$$ \lim_{x\to \infty} \frac{a_{x+1}}{a_x} = \lim_{x\to \infty} \frac{1}{(1+1/x)^x} = \frac{1}{e}. $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...