Wednesday, 11 September 2013

linear algebra - Let A=[aij]inMatn(mathbbR) the matrix defined Calulate det(A)

Let A=[aij]Matn(R) the matrix defined by:



aij=n+1if i=j1if ij



Calulate det




My work:



By definition A=\begin{pmatrix} n+1&&1&&1&&1&&...&&1\\ 1&&n+1&&1&&1&&...&&1\\ 1&&1&&n+1&&1&&...&&1\\ .\\ .\\ .\\ 1&&1&&1&&1&&...&&n+1 \end{pmatrix}



Apply elemental operation by rows, we have:
\begin{pmatrix} n+1&&1&&1&&1&&...&&1\\ 1&&n+1&&1&&1&&...&&1\\ 1&&1&&n+1&&1&&...&&1\\ .\\ .\\ .\\ 1&&1&&1&&1&&...&&n+1 \end{pmatrix}\equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 1&&n+1&&1&&1&&...&&1\\ 1&&1&&n+1&&1&&...&&1\\ .\\ .\\ .\\ n+1&&1&&1&&1&&...&&1 \end{pmatrix}\\\\ \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ n&&0&&0&&0&&...&&-n \end{pmatrix}
\equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&-n&&-n&&-n&&...&&-n^2-2n \end{pmatrix} \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&0&&-n&&-n&&...&&-n^2-3n \end{pmatrix} \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&0&&0&&-n&&...&&-n^2-4n \end{pmatrix} \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&0&&0&&0&&...&&n^2-n^n \end{pmatrix}=B



Then,
\det(A)=-\det(B)=-\det\begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&0&&0&&0&&...&&n^2-n^n \end{pmatrix}=-n^{n-1}+n^n



I have a little doubt in the n\times n element, I think is a little different. Can someone help me?

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...