Recently I've been working on problems including integration and I'm having some difficulties solving this integral :
∫10(1−x)√4x−x2dx
I tried to rewrite it in this form:
∫10(1−x)x√4−xxdx and then subsitute 4−xx=t2 and by this substitution I get a function way easier integrated of this form:
−32∫(t2−3)t2(1+t2)4dt
I can integrate this function easily by simplifying it but the problem is that I cannot define its borders because t is not defined for x=0 so this means that my substitution doesn't hold. But I don't have any other idea how to solve it so any help will be appreciated.Thank you!
Answer
It is always didactically good to give a solution for the given start. I will try it, although trigonometric substitutions from the beginning may save typing.
The substitution t=√(4−x)/x is ok, but we have to use improper integrals. The solution would be as follows. For x=0+ the corresponding (limiting) value of t is t=√4/0+=+∞, and for x=1 we get t=√(4−1)/1=√3. (It is square three, maybe the one reason for writing this answer.)
J=∫10(1−x)√4x−x2dx=∫√3∞−32(t2−3)t2(1+t2)4dt=+32∫∞√3(t2+2t2+1)−5(t2+1)+4(1+t2)4dt=+32∫∞√3[ 1(1+t2)2−51(1+t2)3+41(1+t2)4 ]dt=32(K2−5K3+4K4) ,
where Kn is the integral on the same interval of (1+t2)−n. We have the recursion
\begin{aligned} K_n &=\int_{\sqrt 3}^{\infty}t'\frac1{(1+t^2)^n}\;dt \\ &=\frac t{(1+t^2)^n}\Bigg|_{\sqrt 3}^{\infty} - \int_{\sqrt 3}^{\infty} t\cdot \frac{-2nt}{(1+t^2)^{n+1}}\;dt \\ &=-\frac{\sqrt3}{4^n} + 2n\int_{\sqrt 3}^{\infty}\frac{(t^2+1)-1}{(1+t^2)^{n+1}}\;dt \\ &=-\frac{\sqrt3}{4^n} + 2n(K_n-K_{n+1})\ ,\text{ i.e.} \\ K_{n+1} &= \frac 1{2n}\left[\ (2n-1)K_n-\frac{\sqrt3}{4^n}\ \right]\ . \\[2mm] &\qquad\text{This gives:} \\ K_1 &=\arctan \infty-\arctan\sqrt 3 =\left(\frac 12-\frac 13\right)\pi =\frac 16\pi\ , \\ K_2 &=\frac 12\left[K_1-\frac{\sqrt 3}4\right]=\frac 1{12}\pi - \frac{\sqrt 3}8\ , \\ K_3 &=\frac 14\left[3K_2-\frac{\sqrt 3}{16}\right] =\frac 1{16}\pi - \frac{7\sqrt 3}{64}\ , \\ K_4 &=\frac 16\left[5K_3-\frac{\sqrt 3}{64}\right] =\frac 5{96}\pi - \frac{3\sqrt 3}{32}\ , %\\ %K_5 &=\frac 18\left[7K_4-\frac{\sqrt 3}{216}\right] %=\frac {35}{768}\pi - \frac{169\sqrt 3}{2048}\ , \\ &\qquad\text{ so putting all together} \\ J&=32(K_2-5K_3+4K_4) \\ &=-\frac23\pi+\frac {3\sqrt 3}2\ . \end{aligned}
As said, not the quick way, but all details are displayed. Computer check:
sage: var('x,t');
sage: integral( (1-x)*sqrt(4*x-x^2), x, 0, 1 ).simplify()
-2/3*pi + 3/2*sqrt(3)
sage: integral( 32*(t^2-3)*t^2/(1+t^2)^4, t, sqrt(3), oo ).simplify()
-2/3*pi + 3/2*sqrt(3)
No comments:
Post a Comment