Thursday, 12 September 2013

trigonometry - Proving that $frac{sin alpha + sin beta}{cos alpha + cos beta} =tan left ( frac{alpha+beta}{2} right )$

Using double angle identities a total of four times, one for each expression in the left hand side, I acquired this.



$$\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \frac{\sin \left ( \frac{\alpha}{2}\right ) \cos \left ( \frac{\alpha}{2}\right ) + \sin \left ( \frac{\beta}{2}\right ) \cos \left ( \frac{\beta}{2}\right )}{\cos^2 \left ( \frac{\alpha}{2} \right) - \sin ^2 \left ( \frac{\beta}{2} \right )}$$



But I know that if $\alpha$ and $\beta$ are angles in a triangle, then this expression should simplify to



$$\tan \left ( \frac{\alpha + \beta}{2} \right )$$




I can see that the denominator becomes $$\cos \left ( \frac{\alpha + \beta}{2} \right ) $$



But I cannot see how the numerator becomes



$$\sin \left ( \frac{\alpha + \beta}{2} \right )$$



What have I done wrong here?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...