Tuesday, 17 September 2013

trigonometry - Precalc Trig Identity, verify: $1 + cos(x) + cos(2x) = frac 12 + frac{sin(5x/2)}{2sin(x/2)}$



Working with LHS:




I've tried using the sum to product trig ID to get:



$1 + 2\cos(3x/2)\cos(x/2)$ from here I've tried a couple of things, but can't seem to get closer. I've tried changing the $(3x/2)$ into $(5x/2 - x)$ and using sum identity, but this just makes things even messier.



I also tried working the RHS. I'm only allowed to use the basic trig ID's: pythag, double and half angle, and sum to product and product to sum.


Answer



For $\sin\frac{x}{2}\neq0$ we obtain:
$$1+\cos{x}+\cos2x=\frac{2\sin\frac{x}{2}+2\sin\frac{x}{2}\cos{x}+2\sin\frac{x}{2}\cos2x}{2\sin\frac{x}{2}}=$$
$$=\frac{2\sin\frac{x}{2}+\sin\frac{3x}{2}-\sin\frac{x}{2}+\sin\frac{5x}{2}-\sin\frac{3x}{2}}{2\sin\frac{x}{2}}=\frac{1}{2}+\frac{\sin\frac{5x}{2}}{2\sin\frac{x}{2}}.$$
I used the following formula.

$$\sin\alpha\cos\beta=\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta)).$$
For example,$$2\sin\frac{x}{2}\cos{x}=2\cdot\frac{1}{2}\left(\sin\left(\frac{x}{2}+x\right)+\sin\left(\frac{x}{2}-x\right)\right)=\sin\frac{3x}{2}-\sin\frac{x}{2}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...