Friday, 20 September 2013

real analysis - Does $sum_{n=2}^inftyfrac{coslnln n}{ln n}$ converge?

$$\sum_{n=2}^\infty\frac{\cos\ln\ln n}{\ln n}$$
My idea is
$$-\frac1{\ln n}\le\frac{\cos\ln\ln n}{\ln n}\le\frac1{\ln n}$$
But I don't know if $\sum\frac1{\ln n}$ converges.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...