In this thread it is mentioned that:
∫∞0(arccotx)3dx=3π2ln24−21ζ(3)8
where ζ is the Riemann zeta function.
The steps to the solution I took are:
∫∞0(arccotx)3dx=∫∞0(x)′(arccotx)3dx=[x(arccotx)3]∞0+3∫∞0x(arccotx)2x2+1dx=3[ln(1+x2)(arccot(x))22]∞0+3∫∞0ln(1+x2)arccotxx2+1dx=3(∫10ln(1+x2)arccotxx2+1dx+∫∞1ln(1+x2)arccotxx2+1dx)=3(∫10ln(1+x2)arccotxx2+1dx+∫10ln(1+1x2)arctanx1+1x2⋅1x2dx)=3(∫10ln(1+x2)arccotxx2+1dx+∫10(ln(1+x2)−2lnx)arctanx1+x2dx)=3(∫10ln(1+x2)(arccotx+arctanx)x2+1dx−2∫10lnxarctanx1+x2dx)=3(π2∫10ln(1+x2)1+x2dx−2∫10lnxarctanx1+x2dx)
Let us now calculate the the first integral:
∫10ln(1+x2)1+x2dxx=tanθ=====∫π/40ln(1+tan2θ)1+tan2θ⋅sec2θdθ=∫π/40ln(1+tan2θ)dθ=∫π/40lnsec2θdθ=2∫π/40lnsecθdθ=−2∫π/40lncosθdθ=−2(−∫π/40(∞∑n=1(−1)ncos2nθn−ln2)dθ)=2∞∑n=1(−1)nn∫π/40cos2nθdθ+2∫π/40ln2dθ=2∞∑n=1(−1)nsinnπ22n2+πln22=∞∑n=1(−1)nsinnπ22n2+πln22=πln22+∞∑n=0(−1)n(2n+1)2=πln22−G
where G is the Catalan's constant.
Let's move on to the second integral:
∫10lnxarctanx1+x2dx=∫10lnx∞∑n=1(−1)n−1(H2n−Hn2)x2n−1dx=∞∑n=1(−1)n−1(H2n−Hn2)∫10x2n−1lnxdx=−14∞∑n=1(−1)n−1H2n−Hn2n2=14∞∑n=1(−1)nH2n−Hn2n2=14∞∑n=1(−1)nH2nn2−18∞∑n=1(−1)nHnn2
The second sum is an old chestnut evaluating to
∞∑n=1(−1)nHnn2=−5ζ(3)8
see for example this link.The first sum should bring the G in . The question is how?
Answer
J=∫∞0arctanxlnx1+x2dxK=∫10arctanxlnx1+x2dx
Define on [0;+∞[ the function,
R(x)=∫x0lnt1+t2dt=∫10xln(tx)1+t2x2dt
Observe that,
lim
Perform integration by parts,
\begin{align}J&=\Big[R(x)\arctan x\Big]_0^\infty-\int_0^\infty \left(\int_0^1 \frac{x\ln(tx)}{(1+t^2x^2)(1+x^2)}\,dt\right)\,dx\\ &=-\int_0^\infty\left(\int_0^1 \frac{x\ln x}{(1+t^2x^2)(1+x^2)}\,dt\right)\,dx-\int_0^1 \left(\int_0^\infty \frac{x\ln t}{(1+t^2x^2)(1+x^2)}\,dx\right)\,dt\\ &=-\int_0^\infty \ln x\left[\frac{\arctan(tx)}{1+x^2}\right]_{t=0}^{t=1} \,dx-\int_0^1 \ln t\left[\frac{\ln\left(\frac{1+x^2}{1+t^2x^2}\right)}{2(1-t^2)}\right]_{x=0}^{x=\infty}\,dt\\ &=-J+\int_0^1 \frac{\ln^2 t}{1-t^2}\,dt\\ &=-J+\int_0^1 \frac{\ln^2 t}{1-t}\,dt-\int_0^1 \frac{t\ln^2 t}{1-t^2}\,dt\\ \end{align}
In the latter integral perform the change of variable variable \displaystyle y=x^2,
\begin{align}J&=-J+\left(1-\frac{1}{8}\right)\int_0^1 \frac{\ln^2 t}{1-t}\,dt\\ &=-J+\left(1-\frac{1}{8}\right)\times 2\zeta(3)\\ \end{align}
Therefore,
\begin{align}\boxed{J=\dfrac{7}{8}\zeta(3)}\end{align}
But,
\begin{align}J&=\int_0^1 \frac{\arctan x\ln x}{1+x^2}\,dx+\int_1^\infty \frac{\arctan x\ln x}{1+x^2}\,dx\\ &=K+\int_1^\infty \frac{\arctan x\ln x}{1+x^2}\,dx\end{align}
Perform the change of variable y=\dfrac{1}{x},
\begin{align}J&=K-\int_0^1 \frac{\arctan \left(\frac{1}{x}\right)\ln x}{1+x^2}\,dx\\ &=2K+\frac{1}{2}\pi\text{G} \end{align}
therefore,
\begin{align}\boxed{K=\dfrac{7}{16}\zeta(3)-\frac{1}{4}\pi\text{G}}\end{align}
NB:
For x>0,\arctan x+\arctan\left(\dfrac{1}{x}\right)=\dfrac{\pi}{2}
\displaystyle \int_0^1 \dfrac{\ln x}{1+x^2}\,dx=-\text{G}
\text{G} the Catalan's constant.
Addendum:
\begin{align}L&=\int_0^1 \frac{\ln(1+x^2)}{1+x^2}\,dx\end{align}
Perform the change of variable y=\tan x,
\begin{align}L&=-2\int_0^{\frac{\pi}{4}}\ln(\cos x)\,dx\end{align}
\begin{align}A&=\int_0^{\frac{\pi}{4}}\ln(\cos x)\,dx\\ B&=\int_0^{\frac{\pi}{4}}\ln(\sin x)\,dx\\ A+B&=\int_0^{\frac{\pi}{4}}\ln(\sin x\cos x)\,dx\\ &=\int_0^{\frac{\pi}{4}}\ln\left(\frac{\sin(2x)}{2}\right)\,dx\\ &=\int_0^{\frac{\pi}{4}}\ln\left(\sin(2x)\right)\,dx-\frac{\pi}{4}\ln 2\\ \end{align}
Perform the change of variable \displaystyle y=2x,
\begin{align}A+B&=\frac{1}{2}\int_0^{\frac{\pi}{2}}\ln\left(\sin x\right)\,dx-\frac{\pi}{4}\ln 2\\ &=\frac{1}{2}\times -\frac{\pi}{2}\ln 2-\frac{\pi}{4}\ln 2\\ &=-\frac{\pi}{2}\ln 2\\ B-A&=\int_0^{\frac{\pi}{4}}\ln\left(\tan x\right)\,dx\\ &=-\text{G}\\\end{align}
Therefore,
\begin{align}A&=\frac{1}{2}\text{G}-\frac{1}{4}\pi\ln 2\\ B&=-\frac{1}{2}\text{G}-\frac{1}{4}\pi\ln 2 \end{align}
Therefore,
\begin{align}\boxed{L=\frac{1}{2}\pi\ln 2-\text{G}}\end{align}
No comments:
Post a Comment