Saturday, 21 September 2013

integration - Computing the integral $int_{-infty}^{infty}frac{z^4}{1+z^8}dz$

I need help to compute the following integral:



$$\int_{-\infty}^{\infty}\frac{z^4}{1+z^8}dz$$



I need to use Cauchy's residue theorem.



I can write that $z^8+1=z^8-i^2=(z^4-i)(z^4+i)$. How do I proceed?



Please give a methodological answer so that I can solve other questions too.




Thanks

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...