Computing lim without L'Hopital
Say \lim_{x\to{0+}}\frac{\tan(x)-x}{x^3} = L
For L:
L=\lim_{x\to0}\frac{\tan x-x}{x^3}\\ L=\lim_{x\to0}\frac{\tan 2x-2x}{8x^3}\\ 4L=\lim_{x\to0}\frac{\frac12\tan2x-x}{x^3}\\ 3L=\lim_{x\to0}\frac{\frac12\tan{2x}-\tan x}{x^3}\\ =\lim_{x\to0}\frac{\tan x}x\frac{\frac1{1-\tan^2x}-1}{x^2}\\ =\lim_{x\to0}\frac{(\tan x)^3}{x^3}=1\\ \large L=\frac13
I found that in another Q, can someone tell me why
L=\lim_{x\to0}\frac{\tan x-x}{x^3}=\lim_{x\to0}\frac{\tan 2x-2x}{8x^3}
Answer
If x = 2y then y\rightarrow 0 when x\rightarrow 0, so \lim_{x\rightarrow0} f(x) = \lim_{y\rightarrow 0} f(2y).
No comments:
Post a Comment