Monday, 21 April 2014

calculus - Find the value of : $lim_{xtoinfty}sqrt{x+sqrt{x+sqrt{x+sqrt{x}}}}-sqrt{x}$



$\lim_{x\to\infty}\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x}}}}-\sqrt{x}$




I tried conjugating and it didn't lead me anywhere please help guys.



Thanks,


Answer



You can get the following :



$$\begin{align}\sqrt{x+\sqrt{x+\sqrt{x+\sqrt x}}}-\sqrt x&=\frac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt{x+\sqrt{x+\sqrt{x+\sqrt x}}}+\sqrt x}\\&=\frac{\sqrt{1+\left(\sqrt{x+\sqrt x}\right)/x}}{\sqrt{1+\left(\sqrt{x+\sqrt{x+\sqrt x}}\right)/x}+1}\end{align}$$



Now divide both the numerator and the dinominator by $\sqrt x$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...