Friday, 11 April 2014

proof verification - Prove by induction that $23^{2n} + 31^{2n}+46$ is divisible by 48 for all integers $n ge 0$




The base case, $n = 0$:
$$23^0+31^0+46=48$$ and $48 \bmod 48 = 0$.



Inductive Hypothesis:
Let's assume it is true for $n = k$.
Then $$p(k) = 23^{2k} + 31^{2k}+46$$
$$ \Rightarrow p(k+1) = 23^{2\left(k+1\right)} + 31^{2\left(k+1\right)}+46 = 529\left(23^{2k}\right)+961\left(31^{2k}\right)+46$$



However, I am not sure how to proceed from here in order to get an expression that is divisible by $48$.

Thanks in advance for any hints.


Answer



Note that your $p(k)$ is written wrongly.



\begin{align}
529(23^{2k}+ 31^{2k})+432(31^{2k})+46 &= 529(23^{2k}+ 31^{2k})+9(48)(31^{2k})+46 \\
&= 529(23^{2k}+ 31^{2k}+46)+9(48)(31^{2k})+46(1-529) \\
&= 529(23^{2k}+ 31^{2k}+46)+9(48)(31^{2k})-46(528) \\
&= 529(23^{2k}+ 31^{2k}+46)+9(48)(31^{2k})-46(48)(11) \\
\end{align}



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...