How do I evaluate this limit:
limx→∞(√x3x+2−x)
I tried to evaluate this using rationalizing the denominator, numerator and L'Hospital rule for nearly an hour with no success.
Answer
Rationalizing, observe that:
limx→∞(√x3x+2−x)=limx→∞(√x3x+2−x)(√x3x+2+x√x3x+2+x)=limx→∞x3x+2−x2√x3x+2+x=limx→∞−2x2x+2√x3x+2+x⋅1x1x=limx→∞−2xx+2limx→∞(√xx+2+1)=−2√1+1=−1
No comments:
Post a Comment