Thursday 10 April 2014

calculus - Evaluating the limit of $lim_{xtoinfty}(sqrt{frac{x^3}{x+2}}-x)$.



How do I evaluate this limit:
$$\lim_{x\to\infty}\left(\sqrt{\frac{x^3}{x+2}}-x\right)$$



I tried to evaluate this using rationalizing the denominator, numerator and L'Hospital rule for nearly an hour with no success.



Answer



Rationalizing, observe that:
\begin{align*}
\lim_{x\to\infty}\left(\sqrt{\frac{x^3}{x+2}}-x\right)
&= \lim_{x\to\infty}\left(\sqrt{\frac{x^3}{x+2}}-x\right)\left(\dfrac{\sqrt{\dfrac{x^3}{x+2}} + x}{\sqrt{\dfrac{x^3}{x+2}} + x}\right) \\
&= \lim_{x\to\infty} \dfrac{\dfrac{x^3}{x+2} - x^2}{\sqrt{\dfrac{x^3}{x+2}} + x} \\
&= \lim_{x\to\infty} \dfrac{\dfrac{-2x^2}{x+2}}{\sqrt{\dfrac{x^3}{x+2}} + x} \cdot \frac{\dfrac{1}{x}}{\dfrac{1}{x}}\\
&= \dfrac{\lim\limits_{x\to\infty} \dfrac{-2x}{x+2}}{\lim\limits_{x\to\infty} \left(\sqrt{\dfrac{x}{x+2}} + 1\right)}\\
&= \frac{-2}{\sqrt{1}+1} \\
&= -1

\end{align*}


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...