Wednesday, 30 April 2014

elementary set theory - Disjoint union with limsup






For any sets $A_n,n\in\mathbb{N}$ consider
$$
A^+:=\limsup_{n\to\infty}A_n:=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k,~~~~~E_m:=\bigcup_{n\geq m}A_n.
$$
Show that the sets $E_m, m\geq 1$ can be written as a disjoint union
$$
E_m=A^+\uplus\biguplus_{n\geq m}(E_n\setminus E_{n+1}).
$$






I do not have a working idea. I started with writing $E_m$ as a disjoint union, i.e.
$$
E_m=A_m\uplus\biguplus_{i=m+1}^{\infty}A_i\setminus\bigcup_{j=m}^{i-1}A_j=A_m\uplus\biguplus_{i=m+1}^{\infty}\bigcap_{j=m}^{i-1}A_i\setminus A_j
$$



and additionally I see that
$$

A^+=\bigcap_{n=1}^{\infty}E_n.
$$
But I do not know if this is helpful...



Would be great to get a help resp. answer.



With kind regards,



math12


Answer




Hint: For $x \in E_m$ consider
$$\sup_{A_k \ni x} k.$$
Show that if this supremum is infinite, then $x \in A^{+}$. Otherwise, denote this supremum by $n$ and show that $x \in E_n \setminus E_{n+1}$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...