Tuesday, 29 April 2014

real analysis - Calculus Question: Improper integral intinfty0fraccos(2x+1)sqrt[3]xtextdx



How to evaluate integral 0cos(2x+1)3xdx? I tried substitution x=u3 and I got 30ucos(2u3+1)du. After that I tried to use integration by parts but I don't know the integral cos(2u3+1)du. Any idea? Thanks in advance.


Answer




I=Γ(23)cos(1+π3)22/30.391190966503539






0cos(2x+1)x1/3dx=0cos(2x+1)Γ(13)0t2/3ext dt dx=1Γ(13)0t2/30extcos(2x+1) dx dt=cos(1)Γ(13)0t1/3t2+4dt2sin(1)Γ(13)0t2/3t2+4dt=cos(1)22/3Γ(13)0t1/31+t2dtsin(1)22/3Γ(13)0t2/31+t2dt=cos(1)25/3Γ(13)0t1/31+tdtsin(1)25/3Γ(13)0t5/61+tdt=π(cos(1)3sin(1))22/3Γ(13)3=2πcos(1+π3)22/32πΓ(23)33=Γ(23)cos(1+π3)22/3






Explanation:
(1): 1xn=1Γ(n)0tn1extdt
(2): cos(a+b)=cos(a)cos(b)sin(a)sin(b)
(2): 0eaxsin(bx)dx=ba2+b2
(2): 0eaxcos(bx)dx=aa2+b2
(3): t2t
(4): tt
(5): 0xp11+xdx=πcsc(pπ)
(6): Γ(z)=πcsc(πz)Γ(1z), acosxbsinx=a2+b2cos(x+arctanba)


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...