Saturday, 3 October 2015

analysis - $lim_{t rightarrow infty}frac{t^n z^n}{|t^nz^n + cdots+tz +c|} $?



How to find the limit




$$\lim_{t \rightarrow \infty}\frac{t^n z^n}{|t^nz^n + \cdots+tz +c|} $$
where $c \in\Bbb C$?





is the answer $z^n$? please help :)




Answer



$$\lim_{t\to\infty}\frac{t^n z^n}{|t^nz^n + \ldots+tz +c|}=\lim_{t\to\infty}\frac{z^n}{\left|z^n+\frac{z^{n-1}}{t^{n-1}}+\ldots+\frac{c}{t^n}\right|}=\ldots $$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...