Sunday, 11 October 2015

linear algebra - Find the characteristic polynomial $P_A(lambda)$ of this matrix



Consider the following matrix A:



$$ A=
\begin{pmatrix}
-1 & 1 & 1 \\

1 & -1 & 1 \\
1 & 1 & -1 \\
\end{pmatrix}
$$



I have to find the characteristic polynomial $P_A(\lambda)$ using the following approach:



$$P_A(\lambda)=\det(A-\lambda I)$$



I worked out the first part:




$$\begin{vmatrix}
-1-\lambda & 1 & 1 \\
1 & -1-\lambda & 1 \\
1 & 1 & -1-\lambda \\
\end{vmatrix}
$$



But then I get stuck calculating the determinant with all those $\lambda$ floating around.




Help? :( The answer is supposed to be $P_A(\lambda)=-(\lambda-1)(\lambda+2)^2$


Answer



You could use properties of determinants to avoid having to factor a cubic afterwards; for example:




  • subtract the last column from the first two;

  • add the first two rows to the third:



$$\begin{vmatrix}

-1-\lambda & 1 & 1 \\
1 & -1-\lambda & 1 \\
1 & 1 & -1-\lambda \\
\end{vmatrix}=\begin{vmatrix}
-2-\lambda & 0 & 1 \\
0 & -2-\lambda & 1 \\
2+\lambda & 2+\lambda & -1-\lambda \\
\end{vmatrix}=\begin{vmatrix}
-2-\lambda & 0 & 1 \\
0 & -2-\lambda & 1 \\

0 & 0 & 1-\lambda \\
\end{vmatrix}$$
This is the determinant of a diagonal matrix, so it is the product of the diagonal elements:
$$\left( -2-\lambda \right)^2\left( 1-\lambda \right) \color{blue}{ = 0 \iff \lambda = -2 \;\vee\; \;\lambda = 1}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...