Wednesday, 7 October 2015

sequences and series - If $a,b,c$ are in arithmetic progression, prove that...



If $a,b,c$ are in an Arithmetic Progression (AP), prove that
$$\frac{\sin{c}-\sin{a}}{\cos{a}-\cos{c}}=\cot{b}$$.




I tried setting $a,b,c$ as $(a),(a+d),(a+2d)$ respectively as they are in an AP.It does not work at all. Is there any other method???


Answer



The trick is let $$a=A-d$$ $$b=A$$ and $$c=A+d$$.
$$\frac{\sin{c}-\sin{a}}{\cos{a}-\cos{c}}=\frac{\sin{(A+d)}-\sin{(A-d)}}{\cos{(A-d)}-\cos{(A+d)}}$$
$$\frac{\sin{A}\cos{d}-\cos{A}\sin{d}-\sin{A}\cos{d}-\cos{A}\sin{d}}{\cos{A}\cos{d}-\sin{A}\sin{d}-\cos{A}\cos{d}-\sin{A}\sin{d}}$$



Which simplifies to $$\frac{\cos{A}}{\sin{A}}$$
$$\frac{\cos{A}}{\sin{A}}=\cot{A}$$
$$\cot{A}=\cot{b}$$




Quod erat demonstrandum.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...