I want to prove the following identity using induction (not double counting method). Although it is a specific version of Vandermonde's identity and its inductive proof is presented here, but I need a direct inductive proof on this, not the general form.
\binom{2n}{n}=\sum\limits_{k=0}^n\binom{n}{k}^2
I have tried to simplify \binom{2n+2}{n+1} using Pascal's theorem, but did not get any result. Any help?
Answer
Suppose
\sum_{k=0}^n\binom{n}{k}^2=\binom{2n}{n}\tag{1}
then
\begin{align} \sum_{k=0}^{n+1}\binom{n+1}{k}^2 &=\sum_{k=0}^{n+1}\left[\binom{n}{k}+\binom{n}{k-1}\right]^2\tag{2a}\\ &=\sum_{k=0}^{n+1}\left[\binom{n}{k}^2+\binom{n}{k-1}^2+2\binom{n}{k}\binom{n}{k-1}\right]\tag{2b}\\ &=\binom{2n}{n}\left(1+1+\frac{2n}{n+1}\right)\tag{2c}\\ &=\binom{2n+2}{n+1}\tag{2d} \end{align}
Explanation:
\text{(2a)}: Pascal's Triangle identity
\text{(2b)}: algebra
\text{(2c)}: apply (1) and (3)
\text{(2d)}: \binom{2n+2}{n+1}=\frac{4n+2}{n+1}\binom{2n}{n}
Lemma:
\sum_{k=1}^n\binom{n}{k}\binom{n}{k-1}=\frac{n}{n+1}\sum_{k=0}^n\binom{n}{k}^2\tag{3}
Proof:
Since \binom{n}{k-1}=\frac{k}{n-k+1}\binom{n}{k}, we have \binom{n}{k}+\binom{n}{k-1}=\frac{n+1}{n-k+1}\binom{n}{k}. Therefore,
\frac{n-k+1}{n+1}\left[\binom{n}{k}+\binom{n}{k-1}\right]\binom{n}{k-1}=\binom{n}{k}\binom{n}{k-1}\tag{3a}
Since \binom{n}{k}=\frac{n-k+1}{k}\binom{n}{k-1}, we have \binom{n}{k}+\binom{n}{k-1}=\frac{n+1}{k}\binom{n}{k-1}. Therefore,
\frac{k}{n+1}\left[\binom{n}{k-1}+\binom{n}{k}\right]\binom{n}{k}=\binom{n}{k-1}\binom{n}{k}\tag{3b}
Adding (3a) and (3b) and cancelling yields
\frac{n-k+1}{n+1}\binom{n}{k-1}^2+\frac{k}{n+1}\binom{n}{k}^2=\binom{n}{k-1}\binom{n}{k}\tag{3c}
Summing (3c) over k, and substituting k\mapsto k+1 in the leftmost sum, gives
\frac{n}{n+1}\sum_{k=0}^n\binom{n}{k}^2=\sum_{k=1}^n\binom{n}{k-1}\binom{n}{k}\tag{3d}
QED
No comments:
Post a Comment