Saturday, 16 July 2016

calculus - If a1,a2,dotsc,an>0, then limlimitsxtoinftyleft[fraca1/x1+a1/x2+dotsb+a1/xnnright]nx=a1a2dotsban





If a1,a2,,an are positive real numbers, then prove that




lim



My Attempt:



Let P=\lim_{x \to \infty} \left[\dfrac {a_1^{\frac{1}{x}}+a_2^{\frac {1}{x}}+.....+a_n^{\frac {1}{x}}}{n}\right]^{nx} \implies \ln P=\lim_{x \to \infty} \ln \left[\frac {a_1^{\frac{1}{x}}+a_2^{\frac {1}{x}}+.....+a_n^{\frac {1}{x}}}{n}\right]^{nx} =\lim_{x \to \infty} nx \ln \left[\frac {a_1^{\frac{1}{x}}+a_2^{\frac {1}{x}}+.....+a_n^{\frac {1}{x}}}{n}\right]= \lim_{x \to \infty} n \left[\frac {\ln (a_1^{1/x}+a_2^{1/x}+...+a_n^{1/x})-\ln n}{1/x}\right]




and this is 0/0 form and so I have to apply L'Hospital's rule. Now things get a bit complicated during derivative.



Can someone point me in the right direction? Thanks in advance for your time.


Answer



Let \begin{align}P &=\lim_{x \to \infty} \Big[\dfrac {a_1^{\dfrac{1}{x}}+a_2^{\dfrac {1}{x}}+.....+a_n^{\dfrac {1}{x}}}{n}\Big]^{nx}\\ \implies \ln P &=\lim_{x \to \infty} \ln \Big[\dfrac {a_1^{\dfrac{1}{x}}+a_2^{\dfrac {1}{x}}+.....+a_n^{\dfrac {1}{x}}}{n}\Big]^{nx} \\&=\lim_{x \to \infty} nx \ln \Big[\dfrac {a_1^{\dfrac{1}{x}}+a_2^{\dfrac {1}{x}}+.....+a_n^{\dfrac {1}{x}}}{n}\Big]\\&= \lim_{x \to \infty} n \Big[\dfrac {\ln (a_1^{1/x}+a_2^{1/x}+...+a_n^{1/x})-\ln n}{1/x}\Big]\\&=\lim_{z \to 0} n \Big[\dfrac {\ln (a_1^{z}+a_2^{z}+...+a_n^{z})-\ln n}{z}\Big]\end{align}



and this is 0/0 form and so I have to apply L'Hospital's rule. So,\begin{align}\ln P &=n \lim_{z \to 0}\dfrac {1}{ (a_1^{z}+a_2^{z}+...+a_n^{z})} \times \{a_1^z \ln a_1+a_2^z \ln a_2+.....+a_n^z \ln a_n\} \\&=n \times \dfrac {1}{n}\{\ln a_1+\ln a_2+....+\ln a_n\}\\&=\ln (a_1.a_2...a_n)\\\implies P&=a_1.a_2...a_n \end{align}.




This completes the proof.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...