Sunday 24 July 2016

integration - Find the value of $limlimits_{n to infty}nleft(left(int_0^1frac{1}{1+x^n},mathrm{d}xright)^n-frac{1}{2}right)$




Find the value of the limit $$\lim_{n \to \infty}n\left(\left(\int_0^1 \frac{1}{1+x^n}\,\mathrm{d}x\right)^n-\frac{1}{2}\right)$$




I can't solve the integral $\int_0^1 \mathrm{\frac{1}{1+x^n}}\,\mathrm{d}x$. But maybe the questions doesn't require solving the integral.
Apparently the $\lim_{n \to \infty}(\int_0^1 \mathrm{\frac{1}{1+x^n}}\,\mathrm{d}x)^n$ should be $\frac{1}{2}$ for the question to make sense. That's all I know.


Answer




Let $I(n)$ be given by the integral



$$\begin{align}
I(n)&=\int_0^1 \frac{1}{1+x^n}\,dx \tag 1\\\\
\end{align}$$



Then, expanding the integrand of the integral on the right-hand side of $(1)$ in the Taylor series $ \frac{1}{1+x^n}=\sum_{k=0}^\infty (-1)^kx^{nk}$ reveals



$$\begin{align}
I(n)&=\sum_{k=0}^\infty \frac{(-1)^k}{nk+1}\\\\

&=1+\frac1n \sum_{k=1}^\infty\frac{(-1)^k}{k+1/n} \tag 2
\end{align}$$






Next, using the fact that $\log(2)= \sum_{k=1}^\infty\frac{(-1)^{k-1}}{k}$ and that $\frac{\pi^2}{12}=-\sum_{k=1}^\infty \frac{(-1)^k}{k^2}$, we can write the series in $(2)$ as



$$\begin{align}
\sum_{k=1}^\infty\frac{(-1)^k}{k+1/n} &=-\log(2)+\sum_{k=1}^\infty (-1)^k\left(\frac{1}{k+1/n}-\frac1k\right)\\\\
&=-\log(2)-\frac1n \sum_{k=1}^\infty \frac{(-1)^k}{k(k+1/n)}\\\\

&=-\log(2)-\frac1n \sum_{k=1}^\infty\frac{(-1)^k}{k^2}-\frac1n\sum_{k=1}^\infty (-1)^k\left(\frac{1}{k(k+1/n)}-\frac{1}{k^2}\right)\\\\
&=-\log(2)+\frac{\pi^2}{12n}+O\left(\frac1{n^2}\right) \tag 3
\end{align}$$






Using $(1)-(3)$ yields



$$I(n)=1-\frac{\log(2)}{n}+\frac{\pi^2}{12n^2}+O\left(\frac1{n^3}\right) \tag 4$$







Next, using $(4)$, we can write



$$\begin{align}
\left(I(n)\right)^n&=e^{n\log\left(1-\frac{\log(2)}{n}+\frac{\pi^2}{12n^2}+O\left(\frac1{n^3}\right)\right)}\\\\
&=e^{-\log(2)+\frac{\pi^2}{12n}-\frac{\log^2(2)}{2n}+O\left(\frac{1}{n^2}\right)}\\\\
&=\frac12 \left(1+\frac{\pi^2}{12n}-\frac{\log^2(2)}{2n}+O\left(\frac{1}{n^2}\right)\right)
\end{align}$$




Finally, we have




$$\begin{align}
\lim_{n\to \infty}\left(n\left(\left(I(n)\right)^n-\frac12\right)\right)&=\lim_{n\to \infty}\left(\frac{\pi^2}{24}-\frac{\log^2(2)}{4}+O\left(\frac1n\right)\right)\\\\
&=\bbox[5px,border:2px solid #C0A000]{\frac{\pi^2}{24}-\frac{\log^2(2)}{4}}
\end{align}$$




And we are done!



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...