I know that the sum of the squares of the first n natural numbers is $\frac{n(n + 1)(2n + 1)}{6}$. I know how to prove it inductively. But how, presuming I have no idea about this formula, should I determine it? The sequence $a(n)=1^2+2^2+...+n^2$ is neither geometric nor arithmetic. The difference between the consecutive terms is 4, 9, 16 and so on, which doesn't help. Could someone please help me and explain how should I get to the well known formula assuming I didn't know it and was on some desert island?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment