I find to difficult to evaluate with limn→∞(n(1−n√ln(n)))
I tried to use the fact, that 11−n⩾ln(n)⩾1+n
what gives limn→∞(n(1−n√ln(n)))⩾limn→∞n(1−n√1+n)=limn→∞n∗limn→∞(1−n√1+n)
(1−n√1+n)→−1⇒limn→∞(n(1−n√ln(n)))→−∞
Is it correct? If not, what do I wrong?
Answer
Since it's so hard let's solve it in one line
limn→∞(n(1−n√ln(n)))=−limn→∞(n√ln(n)−11nln(ln(n))⋅ln(ln(n)))=−(1⋅∞)=−∞.
Chris.
No comments:
Post a Comment