Thursday, 14 July 2016

elementary number theory - How do you solve x24equiv0mod21



There is an example in my textbook of how you solve:
x^2 -4\equiv 0 \mod 21 \Leftrightarrow x^2-4\equiv 0 \mod 3 \times 7
and then 2 congruences can be formed out of this equation if:
x^2-4\equiv0 \mod 3 \\ x^2-4 \equiv 0 \mod 7
and from these 2 congruences result 2 more congruences, for each:
x - 2 \equiv 0 \mod 3 \Rightarrow x_1 = 2\\ x + 2 \equiv 0 \mod 3 \Rightarrow x_2 = 1\\ x - 2 \equiv 0 \mod 7 \Rightarrow x_3 = 2\\ x + 2\equiv 0 \mod 7 \Rightarrow x_4 = 5



and then 4 systems of linear congruences are formed:

\begin{cases} x \equiv 2 \mod 3 \\ x \equiv 2 \mod 7\end{cases}
\begin{cases} x \equiv 2 \mod 3 \\ x \equiv 5 \mod 7\end{cases}
\begin{cases} x \equiv 1 \mod 3 \\ x \equiv 2 \mod 7\end{cases}
\begin{cases} x \equiv 1 \mod 3 \\ x \equiv 5 \mod 7\end{cases}



What is the purpose of these systems? I already have the 4 solutions (x_1, x_2, x_3, x_4) of the congruence. Why do I need to form these systems?


Answer



Your ‘4 solutions’ are not solutions modulo 21, but pairs of solutions \bmod3 on one hand, \bmod 7 on the other hand.



From these pairs of solutions, you recover solutions modulo 3\times 7 with the Chinese remainder theorem.




Start from the Bézout's relation \;5\cdot 3-2\cdot 7=1. Then the solution corresponding to the pair (\color{red}1\bmod3,\color{red}5\bmod7), for instance, will be
x\equiv\color{red}5\cdot5\cdot 3-\color{red}1\cdot2\cdot 7=61\equiv19\mod 21.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...