Tuesday, 15 November 2016

abstract algebra - Does there always exist an irreducible polynomial of degree $d$ over $mathbb{Z}/pmathbb{Z}$?

Let $p$ be a prime and let $d$ be a positive integer. Does there always exist an irreducible (i.e. unfactorable) polynomial of degree $d$ over $\mathbb{Z}/p\mathbb{Z}$?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...