Wednesday, 30 November 2016

limits - $lim_{n to infty} left| cos left( frac{pi}{4(n-1)} right) right|^{2n-1}$




I need Help evaluating the limit of $$\lim_{n \to \infty} \left| \cos \left( \frac{\pi}{4(n-1)} \right) \right|^{2n-1} = L$$



I already know that $L = 1$, but I need help showing it.



The best idea I could come up with was to take the series representation of cosine.
$$\lim_{j,n \to \infty} \left| 1 - \left( \frac{\pi}{4(n-1)} \right)^2 \frac{1}{2!} + ....+ \frac{(-1)^j}{(2j)!}\left( \frac{\pi}{4(n-1)} \right)^{2j} \right|^{2n-1} = L$$



All lower order terms go to zero leaving:




$$\lim_{j,n \to \infty} \left|\frac{1}{(2j)!}\left( \frac{\pi}{4(n-1)} \right)^{2j} \right|^{2n-1} = L$$



But this doesn't really seem like I am any closer. How do I proceed? Obviously L'Hospitals rule will occur eventually. Hints?


Answer



Put $$L = \lim_{n \to \infty} \left| \cos \left( \frac{\pi}{4(n-1)} \right) \right|^{2n-1}$$
Then $$\log(L) = \lim_{n \to \infty} (2n-1)\log\left( \cos \left( \frac{\pi}{4(n-1)} \right) \right).$$
This is an $0\cdot \infty$ indeterminate form. Put the $2n -1$ in the denominator and invoke L'hospital.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...