Wednesday, 23 November 2016

real analysis - Show limmtoinfty,ntoinftyf(fracleftlfloormxrightrfloorm,fracleftlfloornyrightrfloorn)=f(x,y)



Suppose f(x,y) is defined on [0,1]×[0,1] and continuous on each dimension, i.e. f(x,y0) is continuous with respect to x when fixing y=y0[0,1] and f(x0,y) is continuous with respect to y when fixing x=x0[0,1]. Show



limm,nf(mxm,nyn)=f(x,y)




My attempt:



First, I know \lim\limits_{m \to \infty ,n \to \infty } \left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = (x,y)



Secondly it looks

\lim\limits_{m \to \infty }\lim\limits_{n \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = \lim \limits_{m \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},y\right) = f(x,y)



and
\lim\limits_{n \to \infty } \lim\limits_{m \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = \lim\limits_{n \to \infty } f\left(x,\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = f(x,y)



since f(x,y) is continuous on each dimension.



However, I am not sure if this can infer \lim\limits_{m \to \infty ,n \to \infty } f(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}) = f(x,y).



Can anyone provide some help? Thank you!




Added:



I am now sure \lim\limits_{m \to \infty } \lim\limits_{n \to \infty } {a_{mn}} = \lim\limits_{n \to \infty } \lim\limits_{m \to \infty } {a_{mn}} = L does not imply \lim\limits_{m \to \infty ,n \to \infty } {a_{mn}} =L in general. Hope someone can help solve the problem.

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...