Suppose $f(x,y)$ is defined on $[0,1]\times[0,1]$ and continuous on each dimension, i.e. $f(x,y_0)$ is continuous with respect to $x$ when fixing $y=y_0\in [0,1]$ and $f(x_0,y)$ is continuous with respect to $y$ when fixing $x=x_0\in [0,1]$. Show
$$\lim_{m \to \infty ,n \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = f(x,y)$$
My attempt:
First, I know $$\lim\limits_{m \to \infty ,n \to \infty } \left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = (x,y)$$
Secondly it looks
$$\lim\limits_{m \to \infty }\lim\limits_{n \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = \lim \limits_{m \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},y\right) = f(x,y)$$
and
$$\lim\limits_{n \to \infty } \lim\limits_{m \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = \lim\limits_{n \to \infty } f\left(x,\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = f(x,y)$$
since $f(x,y)$ is continuous on each dimension.
However, I am not sure if this can infer $\lim\limits_{m \to \infty ,n \to \infty } f(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}) = f(x,y)$.
Can anyone provide some help? Thank you!
Added:
I am now sure $\lim\limits_{m \to \infty } \lim\limits_{n \to \infty } {a_{mn}} = \lim\limits_{n \to \infty } \lim\limits_{m \to \infty } {a_{mn}} = L$ does not imply $\lim\limits_{m \to \infty ,n \to \infty } {a_{mn}} =L$ in general. Hope someone can help solve the problem.
No comments:
Post a Comment