Suppose f(x,y) is defined on [0,1]×[0,1] and continuous on each dimension, i.e. f(x,y0) is continuous with respect to x when fixing y=y0∈[0,1] and f(x0,y) is continuous with respect to y when fixing x=x0∈[0,1]. Show
limm→∞,n→∞f(⌊mx⌋m,⌊ny⌋n)=f(x,y)
My attempt:
First, I know \lim\limits_{m \to \infty ,n \to \infty } \left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = (x,y)
Secondly it looks
\lim\limits_{m \to \infty }\lim\limits_{n \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = \lim \limits_{m \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},y\right) = f(x,y)
and
\lim\limits_{n \to \infty } \lim\limits_{m \to \infty } f\left(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = \lim\limits_{n \to \infty } f\left(x,\frac{{\left\lfloor {ny} \right\rfloor }}{n}\right) = f(x,y)
since f(x,y) is continuous on each dimension.
However, I am not sure if this can infer \lim\limits_{m \to \infty ,n \to \infty } f(\frac{{\left\lfloor {mx} \right\rfloor }}{m},\frac{{\left\lfloor {ny} \right\rfloor }}{n}) = f(x,y).
Can anyone provide some help? Thank you!
Added:
I am now sure \lim\limits_{m \to \infty } \lim\limits_{n \to \infty } {a_{mn}} = \lim\limits_{n \to \infty } \lim\limits_{m \to \infty } {a_{mn}} = L does not imply \lim\limits_{m \to \infty ,n \to \infty } {a_{mn}} =L in general. Hope someone can help solve the problem.
No comments:
Post a Comment