Thursday, 24 November 2016

calculus - Finding the limit of $ lim_{k rightarrow infty} left(frac{2^k + 1}{2^{k-1} + 3}right) $



$$ \lim_{k \rightarrow \infty} \left(\frac{2^k + 1}{2^{k-1} + 3}\right) $$



I'm trying to prove that the limit of the sequence is $2$ using the squeeze theorem, but with no success.
Thanks


Answer



HINT: Multiply the fraction by $1$ in the carefully chosen disguise




$$\frac{1/2^{k-1}}{1/2^{k-1}}\;.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...