Friday, 18 November 2016

limits - Strange equality involving a geometric series and gamma and zeta function

I saw someone do this (in a youtube video):



$$\sum_{\text{n}=1}^\infty\frac{\Gamma\left(\text{s}\right)}{\text{n}^\text{s}}=\Gamma\left(\text{s}\right)\sum_{\text{n}=1}^\infty\frac{1}{\text{n}^\text{s}}=\Gamma\left(\text{s}\right)\zeta\left(\text{s}\right)=\sum_{\text{n}=1}^\infty\left\{\int_0^\infty\text{u}^{\text{s}-1}e^{-\text{n}\text{u}}\space\text{d}\text{u}\right\}=$$
$$\int_0^\infty\text{u}^{\text{s}-1}\left\{\sum_{\text{n}=1}^\infty e^{-\text{n}\text{u}}\right\}\space\text{d}\text{u}=\int_0^\infty\text{u}^{\text{s}-1}\cdot\frac{1}{e^\text{u}-1}\space\text{d}\text{u}$$



But, I can follow all the steps he did but the last integral does not converge because the geometric series only hold when the real part of $\text{u}$ is bigger then $0$, but the lower bound of the integral equals $0$. So why are those two things equal?



Or can we assign a value to:




$$\lim_{u\to0}\text{u}^{\text{s}-1}\cdot\frac{1}{e^\text{u}-1}$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...