Wednesday, 30 November 2016

real analysis - Purely "algebraic" proof of Young's Inequality




Young's inequality states that if $a, b \geq 0$, $p, q > 0$, and $\frac{1}{p} + \frac{1}{q} = 1$, then $$ab\leq \frac{a^p}{p} + \frac{b^q}{q}$$ (with equality only when $a^p = b^q$). Back when I was in my first course in real analysis, I was assigned this as homework, but I couldn't figure it out. I kept trying to manipulate the expressions algebraically, and I couldn't get anywhere. But every proof that I've seen since uses calculus in some way to prove this. For example, a common proof is based on this proof without words and integration. The proof on Wikipedia uses the fact that $\log$ is concave, which I believe requires the analytic definition of the logarithm to prove (correct me if I'm wrong).



Can this be proven using just algebraic manipulations? I know that that is a somewhat vague question, because "algebraic" is not well-defined, but I'm not sure how to make it more rigorous. But for example, the proof when $p = q = 2$ is something I would consider to be "purely algebraic":



$$0 \leq (a - b)^2 = a^2 + b^2 - 2ab,$$ so $$ab \leq \frac{a^2}{2} + \frac{b^2}{2}.$$


Answer



This proof is from "Mathematical Toolchest" published by the Australian Mathematics Trust (image).





Example. If $p$ and $q$ are positive rationals such that $\frac1p + \frac1q = 1$, then for positive $x$ and $y$ $$\frac{x^p}p + \frac{y^q}q \ge xy.$$



Since $\frac1p + \frac1q = 1$, we can write $p = \frac{m+n}m$, $q = \frac{m+n}n$ where $m$ and $n$ are positive integers. Write $x = a^{1/p}$, $y = b^{1/q}$. Then $$\frac{x^p}p + \frac{y^q}q = \frac a{\frac{m+n}m} + \frac b{\frac{m+n}n} = \frac{ma + nb}{m + n}.$$



However, by the AM–GM inequality, $$\frac{ma + nb}{m + n} \ge (a^m \cdot b^n)^{\frac1{m+n}} = a^{\frac1p} b^{\frac1q} = xy,$$ and thus $$\frac{x^p}p + \frac{y^q}q \ge xy.$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...