Value of lim
The answer is given to be 2. I'd appreciate an explanation.
Answer
Since simple substitution of x:=1 would yield the indeterminate form \frac{0}{0},
L'Hôpital's rule to the rescue:
\lim_{x\rightarrow 1}\frac{f(x)}{g(x)}=\lim_{x\rightarrow 1}\frac{f'(x)}{g'(x)}
So, take the derivative of the top and the bottom (not the derivative of the top divided by the bottom).
\lim_{x\rightarrow 1}\frac{x^2-1}{\ln x} = \lim_{x\rightarrow 1}\frac{2x}{1/x}=\lim_{x\rightarrow 1}2x^2= 2
No comments:
Post a Comment