Wednesday, 30 November 2016

calculus - Limit with natural log in the denominator: limxto1fracx21lnx




Value of lim




The answer is given to be 2. I'd appreciate an explanation.


Answer



Since simple substitution of x:=1 would yield the indeterminate form \frac{0}{0},



L'Hôpital's rule to the rescue:



\lim_{x\rightarrow 1}\frac{f(x)}{g(x)}=\lim_{x\rightarrow 1}\frac{f'(x)}{g'(x)}



So, take the derivative of the top and the bottom (not the derivative of the top divided by the bottom).




\lim_{x\rightarrow 1}\frac{x^2-1}{\ln x} = \lim_{x\rightarrow 1}\frac{2x}{1/x}=\lim_{x\rightarrow 1}2x^2= 2


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...