Wednesday, 30 November 2016

calculus - Limit with natural log in the denominator: $lim_{xto1}{frac{x^2 - 1}{ln x}}$




Value of $\displaystyle\lim_{x\to1}{\frac{x^2 - 1}{\ln x}}$




The answer is given to be $2$. I'd appreciate an explanation.


Answer



Since simple substitution of $x:=1$ would yield the indeterminate form $\frac{0}{0}$,



L'Hôpital's rule to the rescue:



$$\lim_{x\rightarrow 1}\frac{f(x)}{g(x)}=\lim_{x\rightarrow 1}\frac{f'(x)}{g'(x)}$$



So, take the derivative of the top and the bottom (not the derivative of the top divided by the bottom).




$$\lim_{x\rightarrow 1}\frac{x^2-1}{\ln x} = \lim_{x\rightarrow 1}\frac{2x}{1/x}=\lim_{x\rightarrow 1}2x^2= 2$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...