Monday, 21 November 2016

calculus - Why suminftyn=0(n+1)5nxn=frac1(15x)2



Why n=0(n+1)5nxn=1(15x)2?




I know that n=0xn=11x, so by the same token, n=05nxn=115x.



Thus
(115x)2=1(15x)2=(n=05nxn)2.



But why is (n=05nxn)2=n=0(n+1)5nxn?



Assuming x is small enough so that the sum converges.



Answer



Note that
11x=n=0xn,
and thus
1(1x)2=(11x)=n=1nxn1=n=0(n+1)xn,
and hence

1(15x)2=n=0(n+1)(5x)n.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...