Why ∞∑n=0(n+1)5nxn=1(1−5x)2?
I know that ∑∞n=0xn=11−x, so by the same token, ∑∞n=05nxn=11−5x.
Thus
(11−5x)2=1(1−5x)2=(∞∑n=05nxn)2.
But why is (∑∞n=05nxn)2=∑∞n=0(n+1)5nxn?
Assuming x is small enough so that the sum converges.
Answer
Note that
11−x=∞∑n=0xn,
and thus
1(1−x)2=(11−x)′=∞∑n=1nxn−1=∞∑n=0(n+1)xn,
and hence
1(1−5x)2=∞∑n=0(n+1)(5x)n.
No comments:
Post a Comment