Monday 21 November 2016

calculus - Why $sum_{n=0}^{infty}(n+1)5^nx^n=frac{1}{(1-5x)^2}$



Why $$\sum_{n=0}^{\infty}(n+1)5^nx^n=\frac{1}{(1-5x)^2}?$$




I know that $\sum_{n=0}^{\infty}x^n=\dfrac{1}{1-x}$, so by the same token, $\sum_{n=0}^{\infty}5^nx^n=\dfrac{1}{1-5x}$.



Thus
$$
\left(\frac{1}{1-5x}\right)^2=\frac{1}{(1-5x)^2} = \left(\sum_{n=0}^{\infty}5^nx^n\right)^2.
$$



But why is $\big(\sum_{n=0}^{\infty}5^nx^n\big)^2=\sum_{n=0}^{\infty}(n+1)5^nx^n$?



Assuming $x$ is small enough so that the sum converges.



Answer



Note that
$$
\frac{1}{1-x}=\sum_{n=0}^\infty x^n,
$$
and thus
$$
\frac{1}{(1-x)^2}=\left(\frac{1}{1-x}\right)'=\sum_{n=1}^\infty nx^{n-1}=\sum_{n=0}^\infty (n+1)x^{n},
$$
and hence

$$
\frac{1}{(1-5x)^2}=\sum_{n=0}^\infty (n+1)(5x)^{n}.
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...