Saturday 12 November 2016

trigonometry - Use an expression for $frac{sin(5theta)}{sin(theta)}$ to find the roots of the equation $x^4-3x^2+1=0$ in trigonometric form





Question: Use an expression for $\frac{\sin(5\theta)}{\sin(\theta)}$ , ($\theta \neq k \pi)$ , k an integer to find the roots of the equation $x^4-3x^2+1=0$ in trigonometric form?









What I have done



By using demovires theorem and expanding



$$ cis(5\theta) = (\cos(\theta) + i\sin(\theta))^5$$



$$ \cos(5\theta) + i \sin(5\theta) = \cos^5(\theta) - 10\cos^3(\theta)\sin^2(\theta) + 5\cos(\theta)\sin^4(\theta) +i(5\cos^4(\theta)\sin(\theta)-10\cos^2(\theta)\sin^3(\theta) + \sin^5(\theta)$$




Considering only $Im(z) = \sin(5\theta)$



$$ \sin(5\theta) = 5\cos^4(\theta)\sin(\theta)-10\cos^2(\theta)\sin^3(\theta) + \sin^5(\theta) $$



$$ \therefore \frac{\sin(5\theta)}{\sin(\theta)} = \frac{5\cos^4(\theta)\sin(\theta)-10\cos^2(\theta)\sin^3(\theta) + \sin^5(\theta)}{\sin(\theta)}$$



$$ \frac{\sin(5\theta)}{\sin(\theta)} = 5\cos^4(\theta) -10\cos^2(\theta)\sin^2(\theta) + \sin^4(\theta) $$



How should I proceed , I'm stuck trying to incorporate what I got into the equation..


Answer




HINT:



Using Prosthaphaeresis Formula,



$$\sin5x-\sin x=2\sin2x\cos3x=4\sin x\cos x\cos3x$$



If $\sin x\ne0,$
$$\dfrac{\sin5x}{\sin x}-1=4\cos x\cos3x=4\cos x(4\cos^3x-3\cos x)=(4\cos^2x)^2-3(4\cos^2x)$$



OR replace $\sin^2x$ with $1-\cos^2x$ in your $$ 5\cos^4x-10\cos^2x\sin^2x + \sin^4x$$




Now if $\sin5x=0,5x=n\pi$ where $n$ is any integer



$x=\dfrac{n\pi}5$ where $n\equiv0,\pm1,\pm2\pmod5$



So, the roots of
$\dfrac{\sin5x}{\sin x}=0\implies x=\dfrac{n\pi}5$ where $n\equiv\pm1,\pm2\pmod5$



But $$\dfrac{\sin5x}{\sin x}=(4\cos^2x)^2-3(4\cos^2x)+1$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...