Saturday, 12 November 2016

trigonometry - Use an expression for fracsin(5theta)sin(theta) to find the roots of the equation x43x2+1=0 in trigonometric form





Question: Use an expression for sin(5θ)sin(θ) , (θkπ) , k an integer to find the roots of the equation x43x2+1=0 in trigonometric form?









What I have done



By using demovires theorem and expanding



cis(5θ)=(cos(θ)+isin(θ))5



cos(5θ)+isin(5θ)=cos5(θ)10cos3(θ)sin2(θ)+5cos(θ)sin4(θ)+i(5cos4(θ)sin(θ)10cos2(θ)sin3(θ)+sin5(θ)




Considering only Im(z)=sin(5θ)



sin(5θ)=5cos4(θ)sin(θ)10cos2(θ)sin3(θ)+sin5(θ)



sin(5θ)sin(θ)=5cos4(θ)sin(θ)10cos2(θ)sin3(θ)+sin5(θ)sin(θ)



sin(5θ)sin(θ)=5cos4(θ)10cos2(θ)sin2(θ)+sin4(θ)



How should I proceed , I'm stuck trying to incorporate what I got into the equation..


Answer




HINT:



Using Prosthaphaeresis Formula,



sin5xsinx=2sin2xcos3x=4sinxcosxcos3x



If sinx0,
sin5xsinx1=4cosxcos3x=4cosx(4cos3x3cosx)=(4cos2x)23(4cos2x)



OR replace sin2x with 1cos2x in your 5cos4x10cos2xsin2x+sin4x




Now if sin5x=0,5x=nπ where n is any integer



x=nπ5 where n\equiv0,\pm1,\pm2\pmod5



So, the roots of
\dfrac{\sin5x}{\sin x}=0\implies x=\dfrac{n\pi}5 where n\equiv\pm1,\pm2\pmod5



But \dfrac{\sin5x}{\sin x}=(4\cos^2x)^2-3(4\cos^2x)+1


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...