Question: Use an expression for sin(5θ)sin(θ) , (θ≠kπ) , k an integer to find the roots of the equation x4−3x2+1=0 in trigonometric form?
What I have done
By using demovires theorem and expanding
cis(5θ)=(cos(θ)+isin(θ))5
cos(5θ)+isin(5θ)=cos5(θ)−10cos3(θ)sin2(θ)+5cos(θ)sin4(θ)+i(5cos4(θ)sin(θ)−10cos2(θ)sin3(θ)+sin5(θ)
Considering only Im(z)=sin(5θ)
sin(5θ)=5cos4(θ)sin(θ)−10cos2(θ)sin3(θ)+sin5(θ)
∴sin(5θ)sin(θ)=5cos4(θ)sin(θ)−10cos2(θ)sin3(θ)+sin5(θ)sin(θ)
sin(5θ)sin(θ)=5cos4(θ)−10cos2(θ)sin2(θ)+sin4(θ)
How should I proceed , I'm stuck trying to incorporate what I got into the equation..
Answer
HINT:
Using Prosthaphaeresis Formula,
sin5x−sinx=2sin2xcos3x=4sinxcosxcos3x
If sinx≠0,
sin5xsinx−1=4cosxcos3x=4cosx(4cos3x−3cosx)=(4cos2x)2−3(4cos2x)
OR replace sin2x with 1−cos2x in your 5cos4x−10cos2xsin2x+sin4x
Now if sin5x=0,5x=nπ where n is any integer
x=nπ5 where n\equiv0,\pm1,\pm2\pmod5
So, the roots of
\dfrac{\sin5x}{\sin x}=0\implies x=\dfrac{n\pi}5 where n\equiv\pm1,\pm2\pmod5
But \dfrac{\sin5x}{\sin x}=(4\cos^2x)^2-3(4\cos^2x)+1
No comments:
Post a Comment